Issue |
MATEC Web Conf.
Volume 157, 2018
Machine Modelling and Simulations 2017 (MMS 2017)
|
|
---|---|---|
Article Number | 08004 | |
Number of page(s) | 10 | |
Section | Theoretical and applied mathematics in engineering | |
DOI | https://doi.org/10.1051/matecconf/201815708004 | |
Published online | 14 March 2018 |
Stability and vibrations control of a stepped beam using piezoelectric actuation
Częstochowa University of Technology, Institute of Mechanics and Machine Design Fundamentals, Częstochowa, Dabrowskiego 69 street, Poland, EU
* Corresponding author: jacek.pr@imipkm.pcz.pl
The objects of this studies are the stability and transversal vibrations of the system composed of three segments, where in the centre part of the system two piezoelectric patches are perfectly bonded to the top and bottom surface of the host beam. The system is kinematically loaded as a result of prescribed displacement of one or both end supports. For the analysis purposes three different beam end supports have been taken into consideration, which prevent longitudinal displacements i.e. clamped-clamped, clamped-pinned and pinned-pinned. This type of beam loading not only affect its natural vibration frequencies but also the system’s stability. By introducing the electric field to the piezo patches, depending on its vector direction, in-plane stretching or compressive residual force may be induced. Presented results show that piezo actuation can significantly modify both the critical buckling force and the vibration frequency.
Key words: stability / vibrations / stepped beam / piezo actuation
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.