Issue |
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
|
|
---|---|---|
Article Number | 03048 | |
Number of page(s) | 4 | |
Section | Algorithm Study and Mathematical Application | |
DOI | https://doi.org/10.1051/matecconf/201823203048 | |
Published online | 19 November 2018 |
Statics Analyses of a Riveting Robot based on 6-SPU Parallel Mechanism
College of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, shanghai, 201620,
* Corresponding author: E-mail: brucexuyong@163.com
A new walking riveting robot based on 6-SPU parallel mechanism is designed to meet the needs of high precision and high efficiency machining for large, thin-walled and complex curved surface workpieces in aviation industry and automotive industry. After modeling and solving the position inverse solution of the robot, the riveting trajectory planning is carried out, and the correct positions and orientations of riveting holes are determined. For the workpiece with large thin-walled cylindrical surface, the riveting hole process of the robot is simulated by finite element analysis software, the maximum deformations in all orientations and the maximum equivalent stresses of the moving platform corresponding to riveting points are obtained. The above results provide the necessary theoretical basis for the structure optimization and performance analyses of the automatic riveting robot.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.