Issue |
MATEC Web Conf.
Volume 226, 2018
XIV International Scientific-Technical Conference “Dynamic of Technical Systems” (DTS-2018)
|
|
---|---|---|
Article Number | 03014 | |
Number of page(s) | 6 | |
Section | 3 Issues of creation and mechanics of heterogeneous and composite materials | |
DOI | https://doi.org/10.1051/matecconf/201822603014 | |
Published online | 07 November 2018 |
Modification of the titanium implants surface with TiO2 coatings obtained by sol-gel method via dip-coating
1 North-Caucasus Federal University, Stavropol, Russia
2 Stavropol State Medical University, Stavropol, Russia
3 OOO «Liko-M», Moscow, Russia
* Corresponding author: sanya-kravtsov@ya.ru
Within the framework of the study, TiO2 coatings were obtained by sol-gel method via dip-coating. For the films obtaining, manual drawing the substrate from the solution at a relatively high rate of 30 mm / min and automated drawing from the solution at low drawing rates (from 1 to 10 mm / min) were used. The morphology of coatings has been studied by scanning electron microscopy. The influence of the mode and the rate of drawing of the substrate from the solution on the films morphology was demonstrated. Analysis of the data showed, that the surface morphology of the coatings obtained at lower drawing rates by an automated method is much more homogeneous - the titanium dioxide films completely repeats the topography of the substrate surface, there are practically no fissures. Qualitative coatings of titanium dioxide, completely replicating the surface relief of the substrate, can be obtained by this method. Selection of the substrate drawing rate allows reducing the influence of the substrate topography and avoiding the appearance of crystallization centers, and as a consequence, the appearance of defects in the morphology of coatings, such as fissures or microparticles.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.