Issue |
MATEC Web Conf.
Volume 226, 2018
XIV International Scientific-Technical Conference “Dynamic of Technical Systems” (DTS-2018)
|
|
---|---|---|
Article Number | 03010 | |
Number of page(s) | 4 | |
Section | 3 Issues of creation and mechanics of heterogeneous and composite materials | |
DOI | https://doi.org/10.1051/matecconf/201822603010 | |
Published online | 07 November 2018 |
Properties of biocomposite on the “bone-tocarbon nano implant” border
1 Rostov State Medical University of the Ministry of Healthcare of the Russian Federation, 344022 Rostov-on-Don, Russian Federation
2 Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russian Federation
* Corresponding author: irkha.vladimir@gmail.com
Novice carbon nanostructural material was investigated to estimate its integration to the bone tissue. Wedge osteotomy of a femur bone performed in experimental circumstance on 26 white rats (control=6, experiment=21). Wedge-shaped (h=4 mm, r=3 mm, α=12) implants were crafted from carbon nano-structural material and used to fill bone’s defect. Rats withdrove from the experiment in 3 months. Mechanical properties of the “bone-wedge-bone” block evaluated by the 3-point bending test. Field emission scanning electron microscope used to investigate biocomposite at the bone-to-implant border. The microelements distribution in the samples measured with energy dispersive X-ray analysis. Biomechanical properties of bone-to-implant biocomposite depend on clinical features of consolidation. Anyway, the toughness (T) of bone-to-implant zone is worse than bone-to-bone regenerate significantly (Tcontr = 56.97 MPa, Texp = 47.68 Mpa, Welsh p-value = 2.689e-07). No Ca, or P reveals in the body of implants. The quality and the thickness of the biocomposite on the bone-to-implant border predetermine clinical results of bone substitution. The absence of microelements inside the body of implants confirms that the implant structure is too subtle. Increasing porosity of material and creation of transverse channels can improve bone conduction and scaffold quality of carbon nano-implants.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.