Issue |
MATEC Web Conf.
Volume 225, 2018
UTP-UMP-VIT Symposium on Energy Systems 2018 (SES 2018)
|
|
---|---|---|
Article Number | 04016 | |
Number of page(s) | 7 | |
Section | Renewable and Non-renewable Energy Resources and Power Generation | |
DOI | https://doi.org/10.1051/matecconf/201822504016 | |
Published online | 05 November 2018 |
Design procedure for dual air handling unit of air-conditioning system
1
Faculty of Mechanical Engineering, University Malaysia Pahang, Malaysia
2
Department of Architecture, Faculty of Human - Environment Studies, Kyushu University, Japan
3
Department of Architecture, Graduate School of Engineering, The University of Tokyo, Japan
* Corresponding author: azizuddin@ump.edu.my
The use of conventional air-conditioning system in tropical climate is ineffective to reduce the humidity. In a typical application, the indoor temperature has to be overcooled to decrease the humidity which has an inherent effect of high energy consumption. The introduction of dual air handling unit (AHU) is the answer to high humidity environment. Each AHU is tasked to control the parameter of temperature and humidity respectively according to the desired value. In this paper, the objective is to design the procedure of sizing the dual AHU so that the control system could run efficiently. Basically, eight (8) steps are necessary to size the dual AHU system and the procedure requires sequential manner. Namely, the design process are indoor design condition, fresh air flow, outdoor design condition, room cooling load, capacity of both AHUs, supply air temperature of second AHU, supply air temperature of first AHU and the enthalpy of both AHUs. The design procedure also requires a psychrometric chart to indicate the air thermal condition throughout the cycle of the air-conditioning system. In conclusion, the proposed design procedure is simple yet effective for the application of dual AHU system to handle the excessive latent heat environment.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.