Issue |
MATEC Web Conf.
Volume 218, 2018
The 1st International Conference on Industrial, Electrical and Electronics (ICIEE 2018)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 7 | |
Section | Control Electronics, Circuits, and Systems | |
DOI | https://doi.org/10.1051/matecconf/201821802001 | |
Published online | 26 October 2018 |
Design of a Sensor Coil for Electromagnetic Induction Tomography
1
Department of Engineering Physics, Institut Teknologi Bandung, Bandung, Indonesia
2
CTECH Labs Edwar Technology, Tangerang, Indonesia
3
Engineering Tomography Laboratory, University of Bath, Claverton Down, BA2 7AY, UK
*
Corresponding author: rohmadi@c-techlabs.com
Electromagnetic tomography method works by utilizing magnetic field induced by coils that are given an electric current. An object with certain conductivity property interferes the magnetic field which will be sensed by the sensor in the form of voltage difference. Experiment using iron as an object has been conducted. In addition, parameters given are distance between transmitter and receiver coil, and frequency of transmitter signal. The result shows that conductive material gives significant voltage difference, which ranges between 0 – 0.072 V. The optimal transmitter-receiver coil distance is the shortest, while the optimal transmitter signal frequency is at 5MHz and 9MHz. Based on the optimum parameters gained, multi-channel magnetic induction tomography (MIT) sensor is designed. It contains four transmitter coils and four receiver coils. They are arranged in circle, which each transmitter and receiver pairs are in opposite location. The sensor proved to be able to sense voltage difference induced by an object. Samples of imaging are also successfully provided accordingly.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.