Issue |
MATEC Web Conf.
Volume 215, 2018
The 2nd International Conference on Technology, Innovation, Society and Science-to-Business (ICTIS 2018)
|
|
---|---|---|
Article Number | 01024 | |
Number of page(s) | 4 | |
Section | Emerging Technologies and Applied Science | |
DOI | https://doi.org/10.1051/matecconf/201821501024 | |
Published online | 16 October 2018 |
A Discussion of Magnetoelectric Composite Design by Bonding the Ferromagnetic Material Graded Layers in Induction Motor
1
Program Doctoral Student of Andalas University, Mechanical Engineering Department, Indonesia,
2
Institute of Technology Padang (Institut Teknologi Padang), Electrical Engineering Department, Indonesia
3
Andalas University, Mechanical Engineering Department, Indonesia
4
Andalas University, Electrical Engineering Department, Indonesia
* Corresponding author: antoslah@gmail.com
Induction motors are the most electric motors widely used in the community, both in the industrial and in the household applications. The power and efficiency of the motors are determined by the type of ferromagnetic material used in the core of the motor. If a very good ferromagnetic material with high permeability is applied to the core of the induction motor, then both the energy conversion and the efficiency of the motor will increase. But, if the ferromagnetic material is not good with low permeability is used in the induction motor, of course, the conversion of energy generated by the motor will be low so that the motor efficiency becomes decreased. In other cases, when ferromagnetic materials with high permeability are used, these ferromagnetic materials will become more fragile than using ferromagnetic materials with lower permeability. Therefore, a good strategy is needed in designing the core material of the induction motor. This study was intended to provide an overview of the potential use of a composite material of Fe and ferromagnetic material that was made in the Graded Magnetostrictive Layers. This research was conducted using several studies of the results of research on the composite material of the magnet. The results of the study show that a composite material of Fe and ferromagnetic materials provided a great potential in applying to induction motors to increase power and efficiency of the motor.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.