Issue |
MATEC Web Conf.
Volume 211, 2018
The 14th International Conference on Vibration Engineering and Technology of Machinery (VETOMAC XIV)
|
|
---|---|---|
Article Number | 18005 | |
Number of page(s) | 6 | |
Section | TP5: Rotor dynamics | |
DOI | https://doi.org/10.1051/matecconf/201821118005 | |
Published online | 10 October 2018 |
FE-BE computation of electromagnetic noise of a permanent-magnetic excited synchronous ma-chine considering dynamic rotor eccentricity
1
University of Stuttgart, Graduate School of Excellence advanced Manufacturing Engineering (GSaME),
70569
Stuttgart,
Germany
2
University of Stuttgart, Institute for Nonlinear Mechanics (INM), Research Group Prof. Gaul,
70569
Stuttgart,
Germany
* Corresponding author: marcel.clappier@gsame.uni-stuttgart.de
Electromagnetic noise in Electrical Machines (EMs) occurs due to vibrations caused by magnetic forces acting onto rotor and stator surface. This is the dominant source for the considered permanent-magnetic excited synchronous machine in this paper. The radiated electromagnetic noise is sequentially calculated by a Finite Element (FE) and Boundary Element (BE) computation. An electromagnetic FE model is created to determine magnetic forces. Structure-borne sound and rotor dynamics are calculated using a structural dynamic FE model for the EM housing and the rotor. In order to predict resonance frequencies and amplitudes as reliable as possible, it is important to know the direction-dependent stiffness of the laminated rotor stacks and mechanical joints as well as their structural damping. Thereby, the properties of the laminated stack can be determined experimentally by a shear and dilatation test. Mechanical joint properties can be modelled by Thin-Layer Elements (TLEs) and the overall damping by the model of constant hysteretic damping. The radiated sound power is determined by a direct BE computation. The influence of dynamic rotor eccentricity on radiated sound power is examined for a run-up of the EM. All FE models are verified by data from experimental modal analysis.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.