Issue |
MATEC Web Conf.
Volume 211, 2018
The 14th International Conference on Vibration Engineering and Technology of Machinery (VETOMAC XIV)
|
|
---|---|---|
Article Number | 18004 | |
Number of page(s) | 6 | |
Section | TP5: Rotor dynamics | |
DOI | https://doi.org/10.1051/matecconf/201821118004 | |
Published online | 10 October 2018 |
Parametric resonances of floating wind turbines blades under vertical wave excitation
1
Department of Mechanical Systems Engineering, Hiroshima University,
1-4-1 Kagamiyama,
Higashi-Hiroshima, Hiroshima,
Japan
2
Department of Mechanical Engineering, Aichi Institute of Technology,
1247 Yachigusa, Yakusa-cho,
Toyota, Aichi,
Japan
3
Kao Corporation,
1-14-10 Kayaba-cho, Nihonbashi,
Chuo-ku, Tokyo,
Japan
4
Institute of International Education and Exchange, Nagoya University,
Furo-cho, Chikusa-ku,
Nagoya, Aichi,
Japan
* Corresponding author: tikeda@hiroshima-u.ac.jp
The parametric resonances of the blades in floating offshore wind turbines are theoretically and experimentally investigated. In the theoretical analysis, each blade is pinned to a horizontal, rotating shaft and has a spring with rotational stiffness at the end. The blade is subjected to horizontal excitation which represents winds; the rotating shaft to vertical excitation which represents waves. The equation of motion for the blade inclination angle includes parametric excitation terms with three different frequencies, i.e., the rotational speed of the blade, and the sum of and difference between the rotational speed and wave excitation frequency. Numerical simulations are conducted for the corresponding linearized system, and it is found that unstable vibrations appear at several rotational speed ranges. An empirical approach is used to determine the regions where the unstable vibrations appear. Swept-sine tests are conducted to determine the frequency response curves for the nonlinear system and demonstrate that the parametric resonances appear at similar rotational speeds as those of the unstable regions. In experiments, parametric resonances were observed at the rotational speeds and wave excitation frequencies predicted by the theoretical analysis.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.