Issue |
MATEC Web Conf.
Volume 211, 2018
The 14th International Conference on Vibration Engineering and Technology of Machinery (VETOMAC XIV)
|
|
---|---|---|
Article Number | 06005 | |
Number of page(s) | 6 | |
Section | SM: Structural Modifications: Modelling Predictions and Experimental Assessment | |
DOI | https://doi.org/10.1051/matecconf/201821106005 | |
Published online | 10 October 2018 |
Coupling of structures using frequency response functions
NOVA UNIDEMI, Universidade NOVA de Lisboa,
Campus de Caparica,
2829-516
Caparica,
Portugal
* e-mail: tan.silva@fct.unl.pt
In the field of structural dynamics is common to predict the behaviour of a structure regarding structural modifications. In this context, the frequency based substructuring method is well-known to perform structural modifications based on the coupling of structures. This process gives the possibility to perform the study of a structure at the level of its components and then assess the response of the coupled system. In practice, it is impossible to attain an experimental complete response model, although one can simulate all the responses of a structure using numerical models. Hence, the substructuring process can be enhanced by the combined use of experimental and numerical responses, as it was demonstrated using numerically obtained frequency response functions. This work presents the enhancement of the frequency based substructuring method using a method to expand experimental frequency response functions over the entire set of degrees of freedom in a finite element model. This expansion process, known as modified Kidder’s method, considers that if one can only measure translations due to exciting force, it is possible to obtain the complete response model, including the rotational frequency response functions due to exciting moments. The combined use of the frequency based substructuring and the modified Kidder’s methods has several advantages, as it avoids modal identification or residual compensation. To evaluate the performance of the proposed procedure a numerical example of a beam structure is presented, and its results are discussed.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.