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Abstract. In the field of structural dynamics is common to predict the behaviour
of a structure regarding structural modifications. In this context, the frequency
based substructuring method is well-known to perform structural modifications
based on the coupling of structures. This process gives the possibility to per-
form the study of a structure at the level of its components and then assess the
response of the coupled system. In practice, it is impossible to attain an exper-
imental complete response model, although one can simulate all the responses
of a structure using numerical models. Hence, the substructuring process can
be enhanced by the combined use of experimental and numerical responses, as
it was demonstrated using numerically obtained frequency response functions.
This work presents the enhancement of the frequency based substructuring
method using a method to expand experimental frequency response functions
over the entire set of degrees of freedom in a finite element model. This ex-
pansion process, known as modified Kidder’s method, considers that if one can
only measure translations due to exciting force, it is possible to obtain the com-
plete response model, including the rotational frequency response functions due
to exciting moments. The combined use of the frequency based substructuring
and the modified Kidder’s methods has several advantages, as it avoids modal
identification or residual compensation. To evaluate the performance of the pro-
posed procedure a numerical example of a beam structure is presented, and its
results are discussed.

1 Introduction

Using structural modifications to predict the behaviour of a structure is a known practice in
the field of structural dynamics. In this context, the frequency based substructuring (FBS)
method [1] is a well-known method to perform structural modifications based on the cou-
pling of substructures. This process gives the possibility to perform the study of a structure
at the level of its components and then assess the response of the coupled system. To obtain a
quality result in the coupling process, one should use a complete response model, which is ex-
perimentally unpractical or even impossible. However, one can simulate all the responses of
a structure using numerical models. Usually, one can only measure few translation degrees of
freedom (DoF) due to exciting forces. Hence, the rotational DoF are commonly disregarded
in testing. On the other hand, if one considers the use of their numerical counter-parts, the
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substructuring process can be enhanced, as it was demonstrated using numerically obtained
frequency response functions (FRF). An approach to tackle this problem was proposed by
Drozg et al. [2].

This paper presents the enhancement of the FBS method using the modified Kidder’s
method [3] to expand a set of experimental FRFs over the entire set of DoFs in a finite el-
ement model. This expansion process may consider that one can only acquire responses
at translational DoFs due to exciting force, and it enables to attain the complete response
model, including the rotational FRFs due to exciting moments. The combined use of the FBS
method and the modified Kidder’s one has several advantages, as it avoids modal identifi-
cation or residual compensation. To evaluate the performance of the proposed procedure a
numerical example is presented, and its results are discussed. A beam structure is divided
in two substructures and then used to simulate the pseudo-experimental FRFs of the com-
plete structure and of its substructures. Note that only translational FRFs due to forces are
considered to be available.

2 Frequency based substructuring

Considering a structure C, composed by two substructures A and B and considering the sets
of DoFs given in Figure 1, it is possible write the complete receptance matrix of the structure
C as,

HC(ω) = HC =


Hii Hi j Hik

H ji H j j H jk

Hki Hk j Hkk

 (1)

The frequency dependence will be omitted for sake of simplicity. Note that DoFs i are the
ones in the domain of A and k in B. The DoFs j denote DoFs shared by A and B in their
interface. Hence, one has the receptance matrices of the substructures A and B given by,

HA =

[
HA

ii HA
i j

HA
ji HA

j j

]
and HB =

[
HB

kk HB
k j

HB
jk HB

j j

]
(2)

regarding that, in the interface DoFs j, both the force equilibrium and the compatibility of
displacements must be fulfilled, one has,

f A
j + f B

j = f C
j and xA

j = xB
j = xC

j (3)

Therefore, eq. (1) can be recast, accordingly to the developed in [1], as,

HC =



HA
ii HA

i j 0 0
HA

ji HA
j j 0 0

0 0 HB
kk HB

k j
0 0 Hki HB

j j


−



−HA
i j

−HA
j j

HB
k j

HB
j j


[
HA

j j +HB
j j

]−1



−HA
i j

−HA
j j

HB
k j

HB
j j



T

(4)

Figure 1: Schematic representation of a structure C, decoupled into two substructures A and B, with
different sets of DoFs identified.
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substructuring process can be enhanced, as it was demonstrated using numerically obtained
frequency response functions (FRF). An approach to tackle this problem was proposed by
Drozg et al. [2].

This paper presents the enhancement of the FBS method using the modified Kidder’s
method [3] to expand a set of experimental FRFs over the entire set of DoFs in a finite el-
ement model. This expansion process may consider that one can only acquire responses
at translational DoFs due to exciting force, and it enables to attain the complete response
model, including the rotational FRFs due to exciting moments. The combined use of the FBS
method and the modified Kidder’s one has several advantages, as it avoids modal identifi-
cation or residual compensation. To evaluate the performance of the proposed procedure a
numerical example is presented, and its results are discussed. A beam structure is divided
in two substructures and then used to simulate the pseudo-experimental FRFs of the com-
plete structure and of its substructures. Note that only translational FRFs due to forces are
considered to be available.

2 Frequency based substructuring

Considering a structure C, composed by two substructures A and B and considering the sets
of DoFs given in Figure 1, it is possible write the complete receptance matrix of the structure
C as,
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ones in the domain of A and k in B. The DoFs j denote DoFs shared by A and B in their
interface. Hence, one has the receptance matrices of the substructures A and B given by,

HA =

[
HA

ii HA
i j

HA
ji HA

j j

]
and HB =
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]
(2)

regarding that, in the interface DoFs j, both the force equilibrium and the compatibility of
displacements must be fulfilled, one has,

f A
j + f B

j = f C
j and xA

j = xB
j = xC

j (3)

Therefore, eq. (1) can be recast, accordingly to the developed in [1], as,
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Figure 1: Schematic representation of a structure C, decoupled into two substructures A and B, with
different sets of DoFs identified.

From eq. (4), it can be seen that the receptance matrix of the complete structure C can
be obtained from the knowledge of the receptance matrices of both substructures A and B.
However, in practice, it is almost impossible to acquire data that allows to built those matrices
completely, mainly due to difficulties with the excitation with pure moments or the ability to
measure some DoFs, namely the rotational ones. Hence, one should consider an expansion
technique suitable to expand a set of experimental FRFs over the receptance matrix elements
that were not acquired. The use of the modified Kidder’s method [3] is here discussed.

3 Modified Kidder’s method

A modified version of the Kidder’s method, applied in the frequency domain, is here con-
sidered to provide an expansion technique suitable to use experimental FRFs as they are
collected.

The modified Kidder’s method is derived from the partitioned dynamic equilibrium equa-
tion written as, ([

Kpp Kps

Ksp Kss

]
− ω2

[
Mpp Mps

Msp Mss

]) {
Hpq(ω)
Hsq(ω)

}
=

{
Iq

0

}
(5)

where the primary p and secondary s coordinates correspond to the measured and unmeasured
DoFs, respectively, and Iq is a boolean vector mapping a given force location q.

From eq. (5) it can be shown that a FRF vector expanded for the unmeasured DoFs is
given by,

Hs j(ω) = −
(
Kss − ω2Mss

)−1 (
Ksp − ω2Msp

)
Hp j(ω) (6)

The expansion process is here achieved spectral line by spectral line for a given experimental
frequency range, for each acquired FRF vector Hp j(ω).

In order to attain a complete FRF matrix from a set of measured FRFs, a two steps ex-
pansion strategy must be addressed. As given by Avitabile and O’Callahan [4] and adapted
with the modified Kidder’s method by Silva and Maia [3]. The expansion strategy relies on a
careful definition of all the system DoFs, considering the specificities related to the response
and excitation coordinates in the response model. Note that in a spatial model one has only
primary and secondary coordinates, while in a response model the primary and secondary
response coordinates have their dual in the excitation coordinate set. Therefore, consider a
complete receptance matrix H partitioned wrt translational t and rotational θ response DoFs
and DoFs where force f and moment τ excitations can be applied as,

H =
[
Ht f Htτ

Hθ f Hθτ

]
(7)

where t ≡ f and θ ≡ τ. Usually in practice, one can only measure a subset of t and excite part
of f , and often these subsets are not equal. Note that the possibility of measuring rotational
DoFs or applying pure moments is here completely rejected, although they can be included.
Hence, one must recast eq. (7) as,

H =



HAA HAE HAU f HAτ

HBA HBE HBU f HBτ

HUt A HUt E HUtU f HUtτ

HθA HθE HθU f Hθτ


(8)

where the subsets of t and f type DoFs present in the FRF matrix can be organized by their
nature, using the subscripts: A for measured/forced DoFs, B for measured/unforced DoFs,
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Figure 2: Illustration of the considered types of DoFs: A measured/forced DoFs, B measured/unforced
DoFs, E unmeasured/forced DoFs, U unmeasured/unforced DoFs.

E for unmeasured/forced DoFs, Ut for unmeasured DoFs, and U f for unforced DoFs (see
Figure 2). However, to ensure symmetry, one can map the unmeasured/forced DoFs E onto
the set of unmeasured DoFs Ut, reorganize H and recast eq. (8) as,

H =



HAA HAE HAU f HAτ

HBA HBE HBU f HBτ

HEA HEE HEU f HEτ

HUt A HUt E HUtU f HUtτ

HθA HθE HθU f Hθτ


=



HAA HAE HAU f HAτ

HEA HEE HEU f HEτ

HU f A HU f E HU f U f HU f τ

HθA HθE HθU f Hθτ


(9)

Regarding the expansion of measured FRFs using the modified Kidder’s method, it is
possible to expand a set of measured FRFs avoiding the need of modal identification. More-
over, in terms of spectral incompleteness, the method is only limited by the acquired spectral
lines and not by the number of identified modes, which eliminates residuals computation, and
therefore their expansion.

Recalling eq. (8), in order to expand the measured FRFs over the entire set of model
DoFs, one considers the expansion scheme here illustrated, using one of the relation given by
eq. (6) and following the steps:

• expand the measured FRFs (the ones related to DoFs A, B and E) to obtain the FRFs at
the unmeasured coordinates due to the applied excitation set, using the modified Kidder’s
method implementation;

• knowing all the FRFs at the set of forced DoFs, reorganize H as in eq. (9) and transpose
the submatrices H•A and H•E to obtain HA• and HE•;

• expand the transposed set of FRFs to obtain the remaining unknown part of H•U f and H•τ.

4 Numerical application: results and discussion

As a numerical application, one has used a beam (structure C) modelled by the finite element
(FE) method, considering 49 2D beam elements with 2 DoFs per node (odd DoFs - trans-
lations; even DoFs - rotations). The beam (structure C) is 860 mm long with a rectangular
cross-section with 16x10 mm, its modulus of elasticity is 210 GPa and density 7680kg/m3.
The substructures A and B are obtained by dividing C into its first 30 FE and the remaining
19, respectively. So, the node 31 is shared by both substructures.

To verify the results, Figure 3 shows FRFs of the complete structure obtained by the
FE method and by the coupling of A and B using the FBS. Note that the match between
FRFs is perfect as one considered the ability to know the entire receptance matrices of both
substructures. Thus, the solution of the coupling problem is exact.

As expected, if one can acquire the complete FRF matrices for both substructures the
coupling problem is easily tackled, even for rotational FRF due to an exciting moment HC

20,40.
This kind of FRF is available in the FE model but it is not the case in common experimental
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Figure 2: Illustration of the considered types of DoFs: A measured/forced DoFs, B measured/unforced
DoFs, E unmeasured/forced DoFs, U unmeasured/unforced DoFs.
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therefore their expansion.

Recalling eq. (8), in order to expand the measured FRFs over the entire set of model
DoFs, one considers the expansion scheme here illustrated, using one of the relation given by
eq. (6) and following the steps:

• expand the measured FRFs (the ones related to DoFs A, B and E) to obtain the FRFs at
the unmeasured coordinates due to the applied excitation set, using the modified Kidder’s
method implementation;

• knowing all the FRFs at the set of forced DoFs, reorganize H as in eq. (9) and transpose
the submatrices H•A and H•E to obtain HA• and HE•;

• expand the transposed set of FRFs to obtain the remaining unknown part of H•U f and H•τ.

4 Numerical application: results and discussion

As a numerical application, one has used a beam (structure C) modelled by the finite element
(FE) method, considering 49 2D beam elements with 2 DoFs per node (odd DoFs - trans-
lations; even DoFs - rotations). The beam (structure C) is 860 mm long with a rectangular
cross-section with 16x10 mm, its modulus of elasticity is 210 GPa and density 7680kg/m3.
The substructures A and B are obtained by dividing C into its first 30 FE and the remaining
19, respectively. So, the node 31 is shared by both substructures.

To verify the results, Figure 3 shows FRFs of the complete structure obtained by the
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FrequencyFrequency

(a) HC
5,1 (FRF type: t f )

FrequencyFrequency

(b) HC
20,40 (FRF type: θτ)

Figure 3: Comparison of FRFs computed by the FBS method and the FE method, considering that the
complete receptance matrices of both substructures A and B are available for the FBS method.

tests. Hence, the results in Figure 4 were obtained by the FBS, considering that only few
translational due to exciting force FRFs are available from both substructures (A and B).
So, the data used as acquired data is limited to the following sets of DoFs for the expansion
process:

Substructure A: AA = [3 9 13 19 23 27 33 39 43 51 57 61]; BA = EA = ∅

Substructure B: AB = [63 69 73 79 83 87 95 99]; BB = EB = ∅
Note that all the FRFs in Figure 4 correspond to non-acquired FRFs, they were computed by
the FBS method using the modified Kidder’s method to expand the available data set.

From Figure 4, one can observe a quite good match between FRFs, especially in the
frequency range bellow 600 Hz. The deviation at higher frequencies is acceptable if compared
to reference works, although it can be attenuated if more FRFs are known.

5 Conclusion
This paper presents the result of the combined implementation of the FBS method for cou-
pling and the modified Kidder’s method for the expansion of measured translational FRFs due
to exciting forces. The expansion process is needed as the FBS method requires the complete
receptance matrices of the substructures to be coupled and due to the fact that usually only
translational due to exciting forces FRFs are experimentally acquired. A numerical example
is used to demonstrate the capability of the proposed implementation and the obtained results
show a high resemblance between the FRFs obtained with the FE method for the complete
structure and the ones obtained with the coupling method, with incomplete receptance matri-
ces. The experimental application of this approach has given also very good results, regarding
the FRFs of the coupled structure. However, this case is out of the scope of this paper.
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the project UNIDEMI Pest-OE/EME/UI0667/2014.
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