Issue |
MATEC Web Conf.
Volume 210, 2018
22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018)
|
|
---|---|---|
Article Number | 04026 | |
Number of page(s) | 5 | |
Section | Computers | |
DOI | https://doi.org/10.1051/matecconf/201821004026 | |
Published online | 05 October 2018 |
Application of Regularized Hydrodynamic Equations for Direct Numerical Simulation of Micro-Scale Flows in Core Samples
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia
* Corresponding author: office@keldysh.ru
The paper is devoted to numerical simulation of three-dimensional isothermal two-phase two-component viscous fluid flows with surface effects in the pore space of core samples. The voxel representation of the flow domain is used suitable for digital rock physics applications. The flow is described by viscous compressible Navier-Stokes-Cahn-Hilliard equations. In order to use simple and computationally efficient explicit numerical algorithms with central difference approximations of spatial terms, a quasi-hydrodynamic regularization of equations is used. Simulation results of fluid displacement in pore space of realistic core sample (sandstone) are presented. The results demonstrate the applicability and good prospects of quasi-hydrodynamic regularization technique to solve the problem.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.