Issue |
MATEC Web Conf.
Volume 207, 2018
International Conference on Metal Material Processes and Manufacturing (ICMMPM 2018)
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 6 | |
Section | Material Science Engineering | |
DOI | https://doi.org/10.1051/matecconf/201820703003 | |
Published online | 18 September 2018 |
A Rolling Simulation System for Reversing Rolling Mills
1
Laboratory for Simulation of Materials and Processes, Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
2
Laboratory for Fluid Dynamics and Thermodynamics, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
a Corresponding author: umut.hanoglu@imt.si
In this work a rolling simulation system has been developed for rolling schedules which consists of multiple reversing rolling mills. A slice model approach is applied where the position of a slice can only be determined by considering total deformation. Each slice is parallel to each other and perpendicular to the rolling direction. The solution of coupled thermal and mechanical models over each slice, at a given time and position, are achieved by a novel meshless Local Radial Basis Function Collocation Method (LRBFCM). Mechanical material model obeys ideal plastic flow rule defined by Von Mises. Unknown fields over the slices are interpolated by a certain number of collocation points distributed over the physical domain and its boundary. A system of equations is solved for each collocation point considering its local neighbouring points in the range between 5 and 7. A non-linear system of equations is solved by direct iteration. Groove geometries of each roll are implemented in a compatible way with the slice model and every roll has a horizontal orientation. In between each rolling pass the billet is rotated either 90 or 45 degrees clockwise or counter clockwise. Reduction at each of the passes can be very high, and in such cases, the material completely fills up the groove. This requires a special attention regarding the contact boundary conditions and the collocation node distribution due to numerical instability issues. Coulomb model of friction or sticking boundary conditions are used at the contact boundaries and Gauss-Seidel iterative elliptic node generation algorithm is used for redistributing collocation nodes over the physical domain, when necessary. The simulation results for arbitrary initial position of the slice in the billet are shown in terms of temperature, displacement, strain and stress fields as well as roll forces and torques. A user friendly computer application is created for industrial use based on C# and .NET.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.