Issue |
MATEC Web Conf.
Volume 204, 2018
International Mechanical and Industrial Engineering Conference 2018 (IMIEC 2018)
|
|
---|---|---|
Article Number | 07018 | |
Number of page(s) | 8 | |
Section | Construction | |
DOI | https://doi.org/10.1051/matecconf/201820407018 | |
Published online | 21 September 2018 |
The modeling and optimization of hot rolling process of A36 structural steel by using response surface methodology
1
Department of Mechanical Engineering, State University of Malang, 65145 Malang, Indonesia
2
Department of Mechanical Engineering, Brawijaya University, 65145 Malang, Indonesia
*
Corresponding author: avita.ayu.ft@um.ac.id
In hot conditions and with various parameters, it has been found several cracks and wear in the hot rolling process due to several factors including von mises stress and plastic strain which is affected by the size of the roller diameter and thickness of the specimen. Modeling and optimization using Response Surface Methodology (RSM) are chosen in this study to determine the optimum parameter design. The effect of roller diameter and thickness of specimens on equivalent stress von mises and plastic strains on the hot rolling process were studied using RSM. Central Composite Design (CCD) with two factors and three levels which are part of the RSM used to present mathematical models. Based on the results of RSM the optimum value obtained is on the roller diameter of 577.1389 mm and the thickness of the specimen 8.5786 mm.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.