Issue |
MATEC Web Conf.
Volume 204, 2018
International Mechanical and Industrial Engineering Conference 2018 (IMIEC 2018)
|
|
---|---|---|
Article Number | 00010 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/201820400010 | |
Published online | 21 September 2018 |
Thermal decomposition behavior of water hyacinth (eichhornia crassipes) under an inert atmosphere
Center for Renewable and Sustainable Energy Engineering, Departement of Mechanical Engineering, State University of Malang, 65145 Malang, Indonesia
*
Corresponding author: sukarni.ft@um.ac.id
Thermogravimetric analysis experiment to understand thermal decomposition behavior of water hyacinth during the pyrolysis has been performed. Water hyacinth was taken randomly from 2 places, i.e., Selorejo and Sengguruh Dam, district of Malang, Indonesia. Those raw materials were thoroughly cleaned by using the water, then cut and dried in an oven with a temperature range of 80-90 °C for 6 hours. Subsequently, the dried samples were crushed and then filtered to a mesh size of 60. Thermal behavior of the sample was observed through the instrumentality of thermal analyzer at a constant heating rate of 10 °C/min with a nitrogen flow rate of 100 ml/min and a temperature range of 25-1000 °C. The kinetics of active pyrolysis zone were evaluated by Coats-Redfern integral method. The thermogravimetric test results show that the water hyacinth biomass decomposed into four stages during the pyrolysis process. The kinetic parameters in term of activation energy (E), logarithmic frequency factor (log A) and reaction order (n) were 60.74 kJ/mol, 4.77/min and 1.9, respectively.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.