Issue |
MATEC Web Conf.
Volume 202, 2018
2018 International Conference on Aeronautical, Aerospace and Mechanical Engineering (AAME 2018)
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 5 | |
Section | Mechanical Design Manufacturing and Automation | |
DOI | https://doi.org/10.1051/matecconf/201820202007 | |
Published online | 26 September 2018 |
Analysis on Rolling Damping of a Conventional Boat fitted with T-shaped Bilge Keels
Department of Mechanical Engineering, Curtin University Malaysia, CDT 250 Miri Sarawak Malaysia
This work presents a numerical study on the effect of T-shaped bilge keels on the roll damping of a conventional boat. A scaled boat model with the same dimensions as that of Irkal et al. [2] was fitted with two T-shaped bilge keels at the edges of the model. Computational Fluid Dynamics method was employed to simulate the roll decay motion of the boat. The motion of the boat is captured using a 6DOF model and the Overset grid approach. Comparison was performed on the damping characteristics of the conventional I-shaped and the T-shaped bilge keels. In addition, the impact of the aspect ratio of the keel bilges on the roll damping of the boat was evaluated. It was found that the bilge keel aspect ratio influences the damping coefficient non-linearly. Sufficiently large aspect ratio, i.e. an aspect ratio greater than 2, is necessary in order to obtain an effective damping on the peak angle.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.