Issue |
MATEC Web Conf.
Volume 197, 2018
The 3rd Annual Applied Science and Engineering Conference (AASEC 2018)
|
|
---|---|---|
Article Number | 11016 | |
Number of page(s) | 4 | |
Section | Electrical Engineering | |
DOI | https://doi.org/10.1051/matecconf/201819711016 | |
Published online | 12 September 2018 |
Efficient energy consumption for indoor mobile robot prototype under illumination
1
Telkom University, School of Electrical Engineering, Jl. Telekomunikasi, Bandung, Indonesia
2
Telkom University, Diploma of Telecommunication Engineering, Jl. Telekomunikasi, Bandung, Indonesia
* Corresponding author: angelina.seilla61@gmail.com
In the next 20 years, energy consumption is expected to increase up to 30% and it will affect energy crisis. Energy crisis can be resolved by energy efficiency. The context of this paper is about the energy efficiency of a mobile robot in the industrial warehouse. Communications media which commonly used in mobile robot navigation such as Laser need large power consumption. In order to reduce power consumption, the system of this paper is designed to use visible light communication (VLC) for mobile robot navigation because VLC only utilize lights as the transmitter. Method of this paper is sending the data contained navigation coordinates which modulated on the lighting system, then data will be received by the photodetector and processed as mobile robot's navigation. From above system, by using 5,68-watt power on lighting system can be used to transmit navigation data with the range up to 2 meters. In the receiver side, a photodetector which uses as receiver generate maximum power 4,14 watt at 10 cm of height between transmitter and receiver while minimum generated power is 3,21 watt at 250 cm of height. The conclusion of this paper is generated power by a photodetector in navigation process mobile robot is affected by angle and distance between transmitter and receiver.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.