Issue |
MATEC Web Conf.
Volume 218, 2018
The 1st International Conference on Industrial, Electrical and Electronics (ICIEE 2018)
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 7 | |
Section | Information Technology | |
DOI | https://doi.org/10.1051/matecconf/201821803009 | |
Published online | 26 October 2018 |
Enhancement of Twice Quasi Orthogonal Space Time Block Coded (QOSTBC) Performance System with Zero Forcing EVCM Decoder
Electrical Engineering, the School of Engineering, Telkom University. Jl. Telekomunikasi No. 01, Terusan Buah Batu, Sukapura, Dayeuhkolot, Bandung, Jawa Barat 40257, Indonesia.
1
Corresponding author: nachwanma@telkomuniversity.ac.id
In today’s modern telecommunications systems, makes the number of studies and development of multiple antennas and multiple-input multiple-output (MIMO) systems to achieve high reliability and low complexity. One attractive approach to improve that performance is using technique transmit diversity which is spacetime block coding and receiver diversity i.e. zero forcing EVCM (ZF EVCM). Although some earlier MIMO standards were develop some space-time codes like (O-STBC)and (Q-OSTBC) to provide high reliability but they are limited able to achieve orthogonality. In this research will be proposed a MIMO system scheme which is an improvement of QOSTBC that used a transmission diversity technique. This improvement from QOSTBC is Twice QOSTBC uses a provision in two codeword matrices to be sent are arranged diagonally so as to have higher levels of orthogonality. In this case Twice QOSTBC highly structured (4x1) can be replaced as an equivalent EVCM channel H. The proposed Twice-QOSTBC’s results outperform other QOSTBC techniques with a difference around 3 dB for single-input multi-input (MISO) input configuration at 10-6 BER and receiver ZF EVCM has a very similar structure as the code matrix S of the underlying Twice QSTBC which can eliminates the system complexity.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.