Issue |
MATEC Web Conf.
Volume 197, 2018
The 3rd Annual Applied Science and Engineering Conference (AASEC 2018)
|
|
---|---|---|
Article Number | 11013 | |
Number of page(s) | 7 | |
Section | Electrical Engineering | |
DOI | https://doi.org/10.1051/matecconf/201819711013 | |
Published online | 12 September 2018 |
Stabilising a cart inverted pendulum with an augmented PID control scheme
1
Malang State Polytechnic, Electrical Engineering Department, Malang, Indonesia
2
Malang State Polytechnic, Information Technology Department, Malang, Indonesia
* Corresponding author: zakiyah_amalia@polinema.ac.id
A cart inverted pendulum is an under actuated system that highly unstable and nonlinear. Therefore, it makes a good problem example which attracts control engineers to validate the developed control algorithms. In this paper, an augmented PID control algorithm is proposed to stabilise a cart inverted pendulum at the desired state. The derivation of a mathematical model of the cart inverted pendulum using Lagrange's equation is discussed in detail. The system dynamics is illustrated to understand better the behaviour of the system. A simulation program has been developed to verify the performance of the proposed control algorithm. The system dynamic behaviours with respect to the variation of the controller parameters are analysed and discussed. Controllers parameters are expressed into two PID gain sets which associated with 2 dynamic states: the cart position (ϰ) and the pendulum angle (θ). It can be concluded from the simulation result that the proposed control algorithm can perform well where acceptable steady errors can be achieved. The best response from the cart inverted pendulum system has been obtained with the value of kPX 190, kDX 50, kIX 5, kPθ 140, kDθ 5, and kIθ 25.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.