Issue |
MATEC Web Conf.
Volume 196, 2018
XXVII R-S-P Seminar, Theoretical Foundation of Civil Engineering (27RSP) (TFoCE 2018)
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 5 | |
Section | Structural Mechanics | |
DOI | https://doi.org/10.1051/matecconf/201819601007 | |
Published online | 03 September 2018 |
Analyzing calculation results of non-stationary axisymmetric thermoelasticity task for a circular isotropic plate
Samara State Technical University, Academy of Architecture and Civil Engineering,
Molodogvardeyskaya St., 194,
Samara,
443001,
Russia
*
Corresponding author: d-612-mit2009@yandex.ru
The paper releases results of numerical calculation of axisymmetric dynamic thermoelasticity task for a fixed circular isotropic plate in case of temperature change on its front faces (boundary conditions of the 1st type). The calculated ratios are obtained by using the GL-theory of thermoelasticity (classical theory), which determines the dependence of the vector of heat flux on the velocity of change and temperature gradient. The mathematical model of the task in question includes differential equations of axisymmetric motion and thermal conductivity, formulated as regard to the component of the movement vector and the function of temperature change. Not self-adjoint system is investigated independently. For its solution, a mathematical apparatus technique of separation of variable in the form of finite integral transformations is used, that is transformations of Fourier, Hankel and generalized integral transformation (GIT). The constructed calculation ratios give an opportunity to define stress and strain state and character of distribution of a thermal field of rigidly fixed circular plate with arbitrary axially symmetrical temperature external influence. It is shown, that elastic inertial characteristics of a plate influence the law of change of movement over time only while investigating very thin plates at high-speed temperature impact.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.