Issue |
MATEC Web Conf.
Volume 192, 2018
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society”
|
|
---|---|---|
Article Number | 03038 | |
Number of page(s) | 4 | |
Section | Track 3: Food, Chemical and Agricultural Engineering | |
DOI | https://doi.org/10.1051/matecconf/201819203038 | |
Published online | 14 August 2018 |
Effect of parameters on the morphology and fibre diameters of edible electrospun chitosan-cellulose acetate-gelatin hybrid nanofibres
1
Department of Food Science and Technology, Faculty of Science and Technology, Thammasasat University (Rangsit Center), Phatum Thani, Thailand
2
Department of Food Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
*
Corresponding author : jaruayporn12@gmail.com
Electrospinning is the favorite process to fabricate fibres with diameter in the range nanoscale through the action of electric field. In this study, 3-7% chitosan, 18.0% cellulose acetate and 30.0% gelatin solution in aqueous 80% acetic acid solution were blended at the volume ratio of 4:1:5 have been successfully electrospun. The effect of processing parameters and the concentration of the polymer solution on the morphology and diameter of electrospun were investigated. The morphology and diameter of electrospun fibres were observed by scanning electron microscope. The diameters of chitosan-cellulose acetate-gelatin nanofibres ranging from 78.94 to 421.05 nm. The results showed that the fibre diameters increased when the solution concentration and flow rate were increased, whereas the fibre diameters decreased when the applied voltage and distance between tip to collector were increased. The conditions of the solution concentration 18.8 %wt, applied voltage at 23 kV, flow rate at 11.67 μL/min and collector distance at 10 cm were selected to prepares the desirable electrospun nanofibres for applications and the further research.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.