Issue |
MATEC Web Conf.
Volume 192, 2018
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society”
|
|
---|---|---|
Article Number | 01025 | |
Number of page(s) | 4 | |
Section | Track 1: Industrial Engineering, Materials and Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/201819201025 | |
Published online | 14 August 2018 |
Influence of serum on DNA protection ability and transfection efficiency of cationic lipid-based nanoparticles for gene delivery
1
Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000 Thailand
2
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240 Thailand
3
Faculty of Pharmacy, Burapha University, Chonburi, 20130 Thailand
*
Corresponding author : samarwadee.pl@go.buu.ac.th
Cationic lipid-based nanoparticulate systems are delivery systems that has been widely used in pharmaceutical field including gene delivery. There are many barriers obstructing genetic materials and their delivery systems to reach the target. Serum is one of the imperative factor that should be investigated. Therefore, the aim of this study was to examine the effect of serum on DNA protection ability of spermine-liposomes and niosomes by evaluating the percentage of transfection efficiency in Hela cell and observing the DNA degradation band using agarose gel electrophoresis in the presence of serum. The results showed that the percentage of transfection efficiency of spermine-liposomes was dramatically decreased when serum is presented (p< 0.05). In contrast, whether or not the serum is presented, the spermine-niosomes showed no significant difference in transfection efficiency. Concisely, liposomes could slightly protect DNA from DNase in the serum, whereas, niosomes had potential ability to protect DNA from the enzymes in serum. This result revealed an advantage of the cationic niosomes system as a gene carrier over the cationic liposomes.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.