Issue |
MATEC Web Conf.
Volume 192, 2018
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society”
|
|
---|---|---|
Article Number | 01016 | |
Number of page(s) | 4 | |
Section | Track 1: Industrial Engineering, Materials and Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/201819201016 | |
Published online | 14 August 2018 |
Lipid-based nanocarriers to enhance skin permeation and antioxidant activity of Centella asiatica extract
1
Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.
2
Thai Herb for Hair Co., Ltd. Nakhon Pathom, Thailand.
*
Corresponding author: ngawhirunpat_t@su.ac.th
The purpose of this study was to evaluate the use of different formulations, including solution, gel, liposome and niosome for in vitro skin permeation and antioxidant activity of Centella asiatica (CA) extract. The liposomes and niosomes loaded with CA were characterized to observe the physicochemical properties i.e., particle size, zeta potential, percentage of entrapment efficiency (%EE) and percentage of loading efficiency (%LE). In vitro skin permeation studies revealed that liposome formulations had a superior enhancing effect on skin permeation compared to niosome, gel and solution formulation. Upon applied niosome formulations for the delivery of CA extract at 24 hours (h), the antioxidant activity was higher than liposome, gel and solution formulation, as evidenced by the increased in percent inhibition using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. However, there was no significant difference in antioxidant activity between niosome and liposome formulations. Accordingly, both the liposome and noisome formulations are promising approaches for transdermal delivery of CA extract for promoting successful antioxidant activity.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.