Issue |
MATEC Web Conf.
Volume 190, 2018
5th International Conference on New Forming Technology (ICNFT 2018)
|
|
---|---|---|
Article Number | 14008 | |
Number of page(s) | 10 | |
Section | Dry metal forming, Special session SPP 1676 | |
DOI | https://doi.org/10.1051/matecconf/201819014008 | |
Published online | 18 September 2018 |
Influence of the surface microstructure on the adhesion of a CVD-diamond coating on steel with a CrN interlayer
1
BIAS – Bremer Institut für angewandte Strahltechnik GmbH, Klagenfurter Str. 5, 28359 Bremen, Germany
2
Chemnitz University of Technology, Reichenhainer Straße 70, 09126 Chemnitz, Germany
*
Corresponding author : prieske@bias.de
forming tool coating. Most of the forming tools are made of steel, so that especially the coatability of steel by a polycrystalline diamond coating would rise the range of fields of application. The polycrystalline CVD-diamond coatings are deposited by a laser induced plasma CVD process, without a vacuum chamber. Various surface microstructures were investigated regarding their influence on the residual stresses to prevent a flaking of the coating: on the one hand, deterministic structures generated by ultrasonic vibration assisted milling (UVAM) and on the other hand, stochastic structures manufactured by blasting and polishing processes. For the UVAM, a surface prediction tool was used to design the surface microstructure beforehand. All steel substrates (material no. 1.2379) were coated in one batch by high-power impulse magnetron sputtering with a chromium nitride coating with a thickness of 2.4 μm. The specimens were analysed by laser microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Raman spectroscopy. None of the microstructures investigated in this study was able to prevent delamination of the coating entirely. It could be shown that a roughness higher than Sa 0.1μm supports the interlocking between coating and surface as well as that sharp peaks inhibit a homogenous diamond coating deposition.
Key words: Micro structure / Diamond coating / Ultrasonic vibration assisted milling
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.