Issue |
MATEC Web Conf.
Volume 190, 2018
5th International Conference on New Forming Technology (ICNFT 2018)
|
|
---|---|---|
Article Number | 11003 | |
Number of page(s) | 6 | |
Section | Rolling/Rollforming | |
DOI | https://doi.org/10.1051/matecconf/201819011003 | |
Published online | 18 September 2018 |
The effect of radial-shear rolling on microstructure and mechanical properties of stainless austenitic steel AISI-321
1
Rudny industrial institute, 50 let Oktyabrya, 111500, Rudny, Kostanay region, Kazakhstan
2
Karaganda state industrial university, Republic avenue 30, 101400, Temirtau, Karaganda region, Kazakhstna
*
Corresponding author : naizabekov57@mail.ru
Improving the quality of metal products by crushing of the microstructure of material is one of the promising areas of modern metallurgy. The basic idea consists in refinement the grain structure of the material to sizes less than a micron, i.e. the obtaining of ultrafine-grained (UFG) materials, offering higher strength properties of the material under preservation or a small loss of ductility. Stainless austenitic steel AISI 321 is widely used in all the above areas as well as in chemical, vacuum and nuclear technology. For the obtaining of UFG structure in this material the method of radial-shear rolling is used. For the purpose of identifying the influence of radial-shear rolling on microstructure and mechanical properties of stainless austenitic steel AISI-321, the experiment was conducted where at the radial-shear rolling mill SVP-08 at 800 °C in several passes of the workpieces with a diameter of 30 mm rolled till a diameter of 13 mm with following cooling in water. The analysis of the microstructure of deformed samples showed the presence of equiaxed ultrafine-grained structure in the peripheral areas of the workpiece and the presence of elongated fibrous texture in the axial zone. The strength characteristics of the workpiece has increased more than 2 times, with a slight decrease of plasticity.
Key words: metal forming / rolling / micro structure
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.