Issue |
MATEC Web Conf.
Volume 189, 2018
2018 2nd International Conference on Material Engineering and Advanced Manufacturing Technology (MEAMT 2018)
|
|
---|---|---|
Article Number | 10019 | |
Number of page(s) | 8 | |
Section | Bio & Human Engineering | |
DOI | https://doi.org/10.1051/matecconf/201818910019 | |
Published online | 10 August 2018 |
A trajectory design method for RLV via artificialmemory-principle optimization
School of Astronautics, Harbin Institute of Technology. Harbin 150001, China
Corresponding author: lihao1800366@126.com
A trajectory optimization method for RLV based on artificial memory principles is proposed. Firstly the optimization problem is modelled in Euclidean space. Then in order to solve the complicated optimization problem of RLV in entry phase, Artificial-memory-principle optimization (AMPO) is introduced. AMPO is inspired by memory principles, in which a memory cell consists the whole information of an alternative solution. The information includes solution state and memory state. The former is an evolutional alternative solution, the latter indicates the state type of memory cell: temporary, short-and long-term. In the evolution of optimization, AMPO makes a various search (stimulus) to ensure adaptability, if the stimulus is good, memory state will turn temporary to short-term, even long-term, otherwise it not. Finally, simulation of different methods is carried out respectively. Results show that the method based on AMPO has better performance and high convergence speed when solving complicated optimization problems of RLV.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.