Issue |
MATEC Web Conf.
Volume 189, 2018
2018 2nd International Conference on Material Engineering and Advanced Manufacturing Technology (MEAMT 2018)
|
|
---|---|---|
Article Number | 04001 | |
Number of page(s) | 6 | |
Section | Circuit Analysis | |
DOI | https://doi.org/10.1051/matecconf/201818904001 | |
Published online | 10 August 2018 |
An algorithm for detecting abnormal electricity mode of power users
1
State Grid Sichuan information & communication company 610041, China
2
School of Computer Science and Technology,Shanghai University of Electric Power, Shanghai 200090, China
Corresponding author: 781263460@qq.com
In order to reduce the non-technical loss and reduce the operating cost of the power company, an abnormal power consumption detection algorithm is proposed. The algorithm includes feature extraction, principal component analysis, grid processing, local outliers, and so on. Firstly, we extract several feature quantities that characterize the user's power consumption pattern, and map the X users to the two-dimensional plane by principal component analysis. Data visualization and easy to calculate local outliers, and grid processing techniques to filter out data points in low density regions. The algorithm is used to reduce the number of training samples in the power user data set, and to output the anomalies and probabilities of all users' behavior. The experimental results show that the use of the sorting only need to detect the anomaly of a few users can find a large number of abnormal users, significantly improve the efficiency of the algorithm.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.