Issue |
MATEC Web Conf.
Volume 189, 2018
2018 2nd International Conference on Material Engineering and Advanced Manufacturing Technology (MEAMT 2018)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 7 | |
Section | Cloud & Network | |
DOI | https://doi.org/10.1051/matecconf/201818903001 | |
Published online | 10 August 2018 |
Abnormal electricity detection with hybrid deep neural network model
1
State Grid Sichuan information & communication company 610041, China
2
College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200090, China
*
Corresponding author : caoxiang99@126.com
This paper tackles a new challenge in abnormal electricity detection: how to promptly detect stealing electricity behavior by a large-scale data from power users. Proposed scheme firstly forms power consumption gradient model by extracting daily trend indicators of electricity consumption, which can exactly reflect the short-term power consumption trend for each user. Furthermore, we design the line-losing model by analyzing the difference between power supplying and actual power consumption. Finally, a hybrid deep neural network detection model is built by combining with the power consumption gradient model and the line-losing model, which can quickly pin down to the abnormal electricity users. Comprehensive experiments are implemented by large-scale user samples from the State Grid Corporation and Tensorflow framework. Extensive results show that comparing with the state-of-the-arts, proposed scheme has a superior detection performance, and therefore is believed to be able to give a better guidance to abnormal electricity detection.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.