Issue |
MATEC Web Conf.
Volume 179, 2018
2018 2nd International Conference on Mechanical, Material and Aerospace Engineering (2MAE 2018)
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 6 | |
Section | Mechanical | |
DOI | https://doi.org/10.1051/matecconf/201817901013 | |
Published online | 26 July 2018 |
Aeroelastic Stability of Labyrinth Seal with Different Structure Parameters
Collaborative Innovation Center for Advanced Aero-Engine, School of Energy and power, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, China
a Corresponding author: wnm189981@163.com
Numerical analysis of turbomachinery based on energy method is used to predict the aeroelastic stability of the straight-through labyrinth seal by solving aerodynamic work and damping. The aeroelastic stability of the labyrinth seal under different working conditions and vibration modes has been compared. It's found that the increase of pressure ratio leads to the greater possibility of aeroelastic instability. The periodic distribution of the aerodynamic work in the circumferential direction of the labyrinth seal corresponds to the number of vibrating nodal diameters. In order to investigate the influence of structure parameters, the effect of relative thickness of the tooth tip, the width of the seal cavity and the eccentricity of the rotor on the aeroelastic stability of the labyrinth seal has been studied. The result of numerical calculation shows that the change of the structural parameters can affect the aeroelastic stability of the labyrinth seal to a certain extent, and can be applied in the structural optimization.
© The Authors, published by EDP Sciences 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.