Issue |
MATEC Web Conf.
Volume 178, 2018
22nd International Conference on Innovative Manufacturing Engineering and Energy - IManE&E 2018
|
|
---|---|---|
Article Number | 04005 | |
Number of page(s) | 6 | |
Section | Advanced Materials | |
DOI | https://doi.org/10.1051/matecconf/201817804005 | |
Published online | 24 July 2018 |
Enhancing the properties of some inverse opal metamaterials by the stopband control
1
“Gh. Asachi” Technical University of Iasi, Department of Telecommunications and Informational Technologies, Carol I Blvd. 11, 700506 Iasi, Romania
2
“Gr. T. Popa” University of Medicine and Pharmacy of Iaşi, Faculty of Pharmacy, Universitatii Str., No. 16, 700115 Iasi, Romania
* Corresponding author: danaity@yahoo.com
The inverse opal structures present very good mechanical and optical properties, like high mechanical strength and Young modulus, important photoluminescence and stimulated Brillouin scattering. Enhancement of the optical properties of the metamaterials based on different types of inverse opal can be obtained by controlling the stopband of the 3D periodic structure. SiO2, TiO2 and CeO2 photonic crystals with inverse opal structures have been studied, presenting voids of 100 – 280 nm. The stopband dependence on the physical and geometrical parameters of the matrix has been analyzed (ions nature, voids diameter, photoelastic constant). The study was performed by structural simulation methods, using the HFSS program. The test configuration was set for the visible light domain. The effective refraction index n and the stimulated Brillouin scattering coefficient gP have been determined and represented on parametrical graphs. Results were compared with the theoretic calculated values. By varying different structural parameters and the stopband control, superior values of the optical parameters have been obtained, in comparison with the data given in literature. We report an increasing of the photoluminescence with about 7%, respectively and enhancement of the stimulated Brillouin scattering coefficient of 11 % when parameters are correlated.
© The Authors, published by EDP Sciences, 2018.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.