Issue |
MATEC Web Conf.
Volume 173, 2018
2018 International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA 2018)
|
|
---|---|---|
Article Number | 01025 | |
Number of page(s) | 4 | |
Section | Modeling, Analysis, and Simulation of Intelligent Manufacturing Processes | |
DOI | https://doi.org/10.1051/matecconf/201817301025 | |
Published online | 19 June 2018 |
Simulation of the Spiking Neural Network based on Practical Memristor
School of Electronic Science, National University of Defence Technology, Changsha 410073, China.
In order to gain a better understanding of the brain and explore biologically-inspired computation, significant attention is being paid to research into the spike-based neural computation. Spiking neural network (SNN), which is inspired by the understanding of observed biological structure, has been increasingly applied to pattern recognition task. In this work, a single layer SNN architecture based on the characteristics of spiking timing dependent plasticity (STDP) in accordance with the actual test of the device data has been proposed. The device data is derived from the Ag/GeSe/TiN fabricated memristor. The network has been tested on the MNIST dataset, and the classification accuracy attains 90.2%. Furthermore, the impact of device instability on the SNN performance has been discussed, which can propose guidelines for fabricating memristors used for SNN architecture based on STDP characteristics.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.