Issue |
MATEC Web of Conferences
Volume 172, 2018
3rd International Conference on Design, Analysis, Manufacturing and Simulation (ICDAMS 2018)
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 8 | |
Section | Heat Transfer | |
DOI | https://doi.org/10.1051/matecconf/201817202007 | |
Published online | 12 June 2018 |
Impact of nano-silicon fuel additive on combustion, performance and emission of a twin cylinder CI engine
1
Department of Production Technology, Madras Institute of Technology, Chennai, India
2
Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
* Corresponding author: anandkumar0412@gmail.com
Combustion characteristics of a fuel defines its performance and emission characteristics. Enhancement of combustion characteristics is feasible by improvisation of fuel properties. Fuel additives were used for varying fuel properties. The evolution of ‘nano-concept’ develops countless applications in the existing technologies. In this experiment silicon nanoparticles were synthesized by ball milling micron sized silicon particles for 45 hours. The elemental and structural characterizations for the additive material were carried out by EDS, SEM and TEM analysis. Silicon nano additive was mixed in three different weight proportions with diesel to prepare the test fuels. The fuel properties variation with the addition of nano additive were studied. Engine testing was carried out at constant 1200 rpm speed and varying load conditions. Diesel fuel added with 0.5 wt% Si nanoadditive (Si 0.5) showed maximum load carrying ability among the different test fuels. In comparison with diesel at 1200 rpm and 100% load condition, an increase in torque of 5.91% was observed and BTE was increased by 8.93% with a decrease in NOx emission by 27.3%. Variation in the performance and emission characteristics of the fuels were the results of change in heat release rate and combustion timing with the addition of nano additives which could be studied from the combustion characteristic curves.
Key words: Combustion Analysis / Fuel Additive / Nano-fuel / Silicon Nanomaterial
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.