Issue |
MATEC Web Conf.
Volume 163, 2018
MATBUD’2018 – 8th Scientific-Technical Conference on Material Problems in Civil Engineering
|
|
---|---|---|
Article Number | 08002 | |
Number of page(s) | 8 | |
Section | Energy-Efficient Building Materials | |
DOI | https://doi.org/10.1051/matecconf/201816308002 | |
Published online | 15 June 2018 |
Multifunctional decorative coatings based on cement-silicate binder
Kalashnikov Izhevsk State Technical University, Studencheskaya Str., 7, Izhevsk 426069, Russian Federation
* Corresponding author: arina-shaybadullina@mail.ru
A facade decorative coating has been developed that is based on sodium silicate and Portland cement and modified with a complex ultra-and nanodispersed admixture including titanium dioxide, expanded perlite sand, and multi-walled carbon nanotubes dispersion. The advantage of the produced coating is using Portland cement as a silicizer instead of the conventionally used zinc oxide. Adding ultra-and nanodispersed admixtures to the cement-silicate composition leads to the structural modification of the matrix of the binder composition along with the formation of a more durable coating (up to 4-5 times compared with the existing analogues) and the possibility of absorbing man-made electromagnetic radiation up to 38%. Expanded pearlite sand in the silicate coating provides a relief surface when applied on the base. The cement-silicate composition for coating facades is shown to have the following physical and technical characteristics: the viscosity measured with Viscometer-6 is 29 sec; the hydrogen index of the medium pH=12.33; the film resistance to static effect of water is 8 hr; the paint consumption for a two-layer coating is 200-400 g/m2; the adhesion (the cross-cut test) is 1 point; the conventional light-fastness is 4-5 points; the frost-resistance of the silicate coating is 75 cycles. The developed facade cement-silicate coating can be applied on the surface of silicate-containing materials. The cost effectiveness of using the multifunctional protectivedecorative coating has been proved in comparison with similar compositions.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.