Issue |
MATEC Web Conf.
Volume 163, 2018
MATBUD’2018 – 8th Scientific-Technical Conference on Material Problems in Civil Engineering
|
|
---|---|---|
Article Number | 06005 | |
Number of page(s) | 8 | |
Section | Geopolymers and Soil-Cement Materials | |
DOI | https://doi.org/10.1051/matecconf/201816306005 | |
Published online | 15 June 2018 |
The Effect of Additives on the Properties of Metakaolin and Fly Ash Based Geopolymers
Institute of Materials Engineering, Faculty of Mechanical Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland
* Corresponding author: kinga.korniejenko@mech.pk.edu.pl
The main motivation of research work is connected with environmental issues. The production of the most important building material of the 20th century - Portland cement technology is associated with significant environmental pollution. The process requires very high temperature and it is energy consuming. During the manufacturing also takes place emission of significant amounts of carbon dioxide and highly toxic nitrogen oxides into the atmosphere These factors show that new solution in this area is required. The most promising alternative is inorganic polymer (geopolymer) technology.
The main objective of the presented research work was to design a new composite for practical applications, especially in construction industry. The paper presents the results of research of geopolymer composites based on geopolymer binders made of metakaolin and fly ash with the addition of titanium oxide and aluminum-calcium cements (including mainly calcium monoglinate) in amount of 4 and 6% by weight. Research methods applied: tests for mechanical properties (compressive strength tests), scanning microscopy investigations (SEM) and X-Ray Diffraction (XRD).
The results show that the addition of aluminum-calcium cements (including calcium monoglinate) significantly increases the compressive strength of geopolymers. Geopolymers based on fly ash with the addition of 6% calcium-aluminum cement with a calcium monoglinate content above 69% are characterized by compressive strength above 50 MPa, while geopolymers from metakaolin with the same additive were characterized by compressive strength above 80 MPa.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.