Issue |
MATEC Web Conf.
Volume 163, 2018
MATBUD’2018 – 8th Scientific-Technical Conference on Material Problems in Civil Engineering
|
|
---|---|---|
Article Number | 05009 | |
Number of page(s) | 10 | |
Section | Durability and Environmental Impact | |
DOI | https://doi.org/10.1051/matecconf/201816305009 | |
Published online | 15 June 2018 |
Alkali-silica reaction and microstructure of concrete subjected to combined chemical and physical exposure conditions
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
* Corresponding author: djozwiak@ippt.pan.pl
Salt solutions are used to ensure safe driving conditions during winter. NaCl deicer is the most often used brine in Polish climatic zone. The chemical effects of this type of chloride-based deicer in wetting and drying (WD) and temperature cycles on concrete need to be better understood. This research was focus to study the microstructure of air-entrained pavement concrete after combined chemical (10% of NaCl) and physical (WD and 60°C) exposure conditions. The adopted WD and temperature regime was designed to verify the hypothesis that regularly alternating wetting and drying cycles with external alkali supply from deicer salt will provoke the Alkali-Silica Reaction (ASR). The aggregates varied their origin and mineralogical composition. The microscopic examination was carried out on concrete specimens using SEM with EDX. The microscopic analysis has shown that main reason for concrete deterioration during cyclic chemical and physical exposure conditions was both physical influence - WD cycles and the chemical influence – ASR (primarily, the fine aggregate which lead to form of alkali-silica gel). The expansive gel was shown to be capable of destroying the test specimens. Also differences in mineralogical composition of coarse aggregates influenced on the concrete prism expansion due to ASR.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.