Issue |
MATEC Web Conf.
Volume 160, 2018
International Conference on Electrical Engineering, Control and Robotics (EECR 2018)
|
|
---|---|---|
Article Number | 07003 | |
Number of page(s) | 4 | |
Section | Information Science and Engineering | |
DOI | https://doi.org/10.1051/matecconf/201816007003 | |
Published online | 09 April 2018 |
Short-Term Traffic Flow Prediction of Highway Network Based on Network-Constrained Lasso and NN
1
Engineering Research Center of Wideband Wireless Communication Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, 210003 Nanjing, China
2
Jiangxi Expressway Networking Management Center, 330036 Nanchang, China
Accurate and timely traffic flow prediction is important for the successful deployment of intelligent transportation systems. Most of existing methods have not made good use of information from adjacent sections to analyse the trends of the object section. A new method for traffic flow prediction of highway network, namely network-constrained Lasso (Least absolute shrinkage and selection operator) and Neural Networks, was proposed. Unlike existing methods, our approach incorporated all the spatial and temporal information available in a highway network to carry our short-term traffic flow prediction for the objective section. To capture the spatial correlation of traffic network, the Laplacian matrix was introduced to describe the highway network structure. Subsequently, a network-constrained Lasso method was applied for sparse variable selection. With the extracted historic and real-time data, the back propagation neural networks were implemented to predict traffic flow at different time intervals in future. The experimental results verified that the proposed method could achieve above 90% average accuracy in the 30-minutes speed predictions for 78 road sections.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.