Issue |
MATEC Web Conf.
Volume 218, 2018
The 1st International Conference on Industrial, Electrical and Electronics (ICIEE 2018)
|
|
---|---|---|
Article Number | 03021 | |
Number of page(s) | 6 | |
Section | Information Technology | |
DOI | https://doi.org/10.1051/matecconf/201821803021 | |
Published online | 26 October 2018 |
Time Series Traffic Speed Prediction Using k-Nearest Neighbour Based on Similar Traffic Data
Universitas Mercu Buana, Faculty of Computer Science, Jakarta, Indonesia
*
Corresponding author: bagus.priambodo@mercubuana.ac.id, yuwan.jumaryadi@mercubuana.ac.id
During the past few years, time series models and neural network models are widely used to predict traffic flow and traffic congestion based on historical data. Historical data traffic from sensors is often applied to time series prediction or various neural network predictions. Recent research shows that traffic flow pattern will be different on weekdays and weekends. We conducted a time series prediction of traffic flow on Monday, using data on weekdays and whole days data. Prediction of short time traffic flows on Monday based on weekdays data using k-NN methods shows a better result, compared to prediction based on all day’s data. We compared the results of the experiment using k-NN and Neural Network methods. From this study, we observed that generally, using similar traffic data for time series prediction show a better result than using the whole data.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.