Issue |
MATEC Web of Conferences
Volume 159, 2018
The 2nd International Joint Conference on Advanced Engineering and Technology (IJCAET 2017) and International Symposium on Advanced Mechanical and Power Engineering (ISAMPE 2017)
|
|
---|---|---|
Article Number | 02029 | |
Number of page(s) | 6 | |
Section | Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/201815902029 | |
Published online | 30 March 2018 |
Path planning for automatic guided vehicle with multiple target points in dynamic environment
Department of Mechanical Design Engineering, Pukyong National University, Busan, 48549, Republic of Korea
* Corresponding author: kimsb@pknu.ac.kr
In path planning field, Automatic guided vehicle (AGV) has to move from an initial point towards a target point with capability to avoid obstacles. There are A*, D* and D* lite path planning algorithms in the path planning algorithm. This paper proposes a modified D* lite path planning algorithm using the most efficient D* lite among these algorithms. The modified D* lite path planning algorithm is to improve these D* lite path planning algorithm’s weaknesses such as traversing across obstacles sharp corners, or traversing between two obstacles. To do this task, the followings are done. First, a work space is divided into square cells. Second, cost of each edge connecting current node to neighbor nodes is calculated. Third, the shortest paths from the initial point to all multiple target points are computed and the shortest paths from any target point to remaining target points including the goal point are computed by using Hamilton path. Fourth, a cost-minimal path is re-calculated as soon as the laser sensor detects an obstacle and make an updated list of target points. Finally, the validity of the proposed modified D* lite path planning algorithm is verified through simulation and experimental results.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.