Issue |
MATEC Web Conf.
Volume 157, 2018
Machine Modelling and Simulations 2017 (MMS 2017)
|
|
---|---|---|
Article Number | 06002 | |
Number of page(s) | 6 | |
Section | Modelling of structural materials, composites and nanomaterials | |
DOI | https://doi.org/10.1051/matecconf/201815706002 | |
Published online | 14 March 2018 |
Buckling analysis of graphene nanosheets by the finite element method
Department of Applied Mechanics and Mechanical Engineering, Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
* Corresponding author: pavol.lengvarsky@tuke.sk
The paper is devoted to the problems related to buckling analysis of graphene sheets without and with vacancies in the structure under different boundary conditions. The analysis was performed by the classical numerical treatment – the finite element method (FEM). The graphene sheets were modelled by beam elements. Interatomic relations between carbon atoms in the structure were represented by the beams connecting individual atoms. The behaviour of the beam as structural element was based on the properties that were established from relations of molecular mechanics. The vacancies in single layer graphene sheets (SLGSs) were created by elimination of randomly chosen atoms and corresponding beam elements connected to the atoms in question. The computations were accomplished for different percentage of atom vacancies and the results represent an obvious fact that the critical buckling force decreases for increased percentage of vacancies in the structure. The numerical results are represented in form of graphs.
Key words: buckling / graphene sheet / vacancy / beam / finite element method
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.