Issue |
MATEC Web Conf.
Volume 156, 2018
The 24th Regional Symposium on Chemical Engineering (RSCE 2017)
|
|
---|---|---|
Article Number | 03043 | |
Number of page(s) | 7 | |
Section | Processes for Energy and Environment | |
DOI | https://doi.org/10.1051/matecconf/201815603043 | |
Published online | 14 March 2018 |
Biogas Production from Palm Oil Fruit Bunch in Anaerobic Biodigester through Liquid State (LS-AD) and Solid State (SS-AD) Method
Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl.Prof. Soedarto, SH, Tembalang, Semarang, Indonesia 50275
* Corresponding author: baktijos@che.undip.ac.id
The crucial problem facing the world today is energy resources. Waste production of palm oil fruit bunch potentially produce as renewable energy resource. Palm oil fruit bunch contains 44% cellulose, 18% lignin and 34% hemicellulose. Organic carbon source is contained in biomass potentially produce biogas. Biogas is one of alternative energy, which is environmentally friendly and has been widely developed. This research is aimed to examine the effect of pretreatment in raw material of waste palm oil fruit bunch for the production of biogas, the effect of time, ratio C/N, and effect of microbial consortium. The variables are total solid (TS) used 10% and 18% with a 40 mesh physical pretreatment, chemical pretreatment with NaOH 8% gr / gr TS, and biology 5% g/vol with microbial consortium. Biogas production process was conducted over 2 months in room temperature, the test response quantitative results in the form of biogas volume every 2 days and also flame test. The result of this research shows that the highest daily production rate of biogas obtained from this study was 5,73 ml/gr TS and the highest biogas production accumulation generated at 58,28 ml/gr TS produced through a 40 mesh sieve of waste oil palm empty fruit bunch, immersion in NaOH, through solid state fermentation and C/N 30. From this research, it can be concluded that the optimum production of biogas formation occurs with the value of C/N 30, physical and biological pretreatment, and solid state method.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.