Issue |
MATEC Web Conf.
Volume 154, 2018
The 2nd International Conference on Engineering and Technology for Sustainable Development (ICET4SD 2017)
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 5 | |
Section | Engineering and Technology | |
DOI | https://doi.org/10.1051/matecconf/201815401007 | |
Published online | 28 February 2018 |
Simulation of biodiesel production using hydro-esterification process from wet microalgae
Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia
* Corresponding author: yanopradana@ugm.ac.id
Recently, algae have received a lot of attention as a new biomass source for the production of renewable energy, such as biodiesel. Conventionally, biodiesel is made through esterification or transesterification of oils where the process involves a catalyst and alcohol to be reacted in a reactor. However, this process is energy intensive for drying and extraction step. To overcome this situation, we studied simulation of a new route of hydro-esterification process which is combine hydrolysis and esterification processes for biodiesel production from wet microalgae. Firstly, wet microalgae treated by hydrolyzer to produce fatty acids (FAs), separated with separator, and then mixed with methanol and esterified at subcritical condition to produce fatty acid methyl esters (FAMEs) while H2SO4 conducted as the catalyst. Energy and material balance of conventional and hydrolysis-esterification process was evaluated by Aspen Plus. Simulation result indicated that conventional route is energy demanding process, requiring 4.40 MJ/L biodiesel produced. In contrast, the total energy consumption of hydrolysis-esterification method can be reduced significantly into 2.43 MJ/L biodiesel. Based on the energy consumption comparison, hydro-esterification process is less costly than conventional process for biodiesel production.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.