Issue |
MATEC Web Conf.
Volume 154, 2018
The 2nd International Conference on Engineering and Technology for Sustainable Development (ICET4SD 2017)
|
|
---|---|---|
Article Number | 01010 | |
Number of page(s) | 5 | |
Section | Engineering and Technology | |
DOI | https://doi.org/10.1051/matecconf/201815401010 | |
Published online | 28 February 2018 |
Simulation study of the biodiesel production from palm fatty acid distillate using palm empty fruit bunch catalyst in reactive distillation column
Chemical Engineering Department, Universitas Islam Indonesia, Indonesia
* Corresponding author: arif.hidayat@uii.ac.id
In this paper, the simulation study of biodiesel production from Palm Fatty Acid Distillate (PFAD) using Palm Empty Fruit Bunch (PEFB) catalyst as the heterogeneous acid catalyst in reactive distillation (RD) column was studied. The main parameters of the basic RD column such as the number of stages, molar ratio of feed, total number of stages, and reboiler heat duty were employed in the simulation study. The equilibrium stage and rate-based models were used for the RD simulation studies. The simulation studies show that the equilibrium stage model could describe the column profiles only qualitatively while the rate-based model was capable in describing the column profiles quantitatively and qualitatively. From simulation results, it can be concluded that the reactive distillation process with the Palm Empty Fruit Bunch catalyst offered advantages over the conventional process because it could eliminate the requirement of post-processing separation and purification at cost-effective column design and operating conditions. The optimum condition for producing biodiesel by reactive distillation using PEFB catalyst was found as follows: 4:1 of methanol to PFAD molar feed ratio, reflux ratio of 1.5, reboiler heat duty of 2.107 kJ/h and 3 reactive stages. This condition provided a FFA conversion of 97 wt% and biodiesel purity of 97.5%.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.