Issue |
MATEC Web Conf.
Volume 151, 2018
2017 Asia Conference on Mechanical and Aerospace Engineering (ACMAE 2017)
|
|
---|---|---|
Article Number | 04001 | |
Number of page(s) | 5 | |
Section | Aircraft Structure Design and Control | |
DOI | https://doi.org/10.1051/matecconf/201815104001 | |
Published online | 21 February 2018 |
The Gradational Route Planning for Aircraft Stealth Penetration Based on Genetic Algorithm and Sparse A-Star Algorithm
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
It is established for a gradational route planning algorithm which includes two layers. The first layer makes use of genetic algorithm to obtain the global optimal path by its global optimal characteristics. The second layer makes use of A* algorithm to obtain the local optimal path by its dynamic characteristic. When flying along the global optimal path, locating the new threat and confirming its performance, the aircraft can plan the local optimal path timely by A* algorithm. It is constructed for the cost function with two goals of the range and the average detection probability, which is used as the goal function for optimal path planning. Two paths that obtained from two optimal methods are merged to construct the optimal route comprehensively considering the threats and range. The simulation result shows that the cost of new optimal route is lower than the original optimal path obtained only by the genetic algorithm.It revealed that our algorithm could obtain an optimal path when a new radar threas occured.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.