Issue |
MATEC Web Conf.
Volume 151, 2018
2017 Asia Conference on Mechanical and Aerospace Engineering (ACMAE 2017)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 5 | |
Section | Material Performance Analysis and Testing | |
DOI | https://doi.org/10.1051/matecconf/201815101002 | |
Published online | 21 February 2018 |
Investigation of Micro Hardness, Cooling Rate and Microstructure of ATIG Welded samples of Al-SiC composite
School of Mechanical Engineering, SASTRA Univeristy, Thanjavur, India – 613401.
Activated TIG welding has been performed on Al – 8% SiC composite 5mm plate with various fluxes such as Al2O3, MnO2, CaO, MgO, SiO2 & TiO2, to study & analyze the Microstructure, Micro hardness and cooling rate. Correlation study between micro hardness, microstructure and cooling rate for Constant Current TIG welding and Activated TIG welding on Al-SiC composite are also carried out to analyze the relation between the effect of cooling rate on microstructure & the effect of microstructure on micro hardness. The experimental results of ATIG welding on Al-SiC composite shows fine grain weld microstructure on ATIG – SiO2 & ATIG – TiO2, which results in higher micro hardness. Micro hardness values are taken in different locations of weld surface at 1mm, 2mm & 3mm below the weld surface and the same is also observed along the weld zone to heat affected zone upto 12mm for the center of the weldment. Minimum micro hardness values found in ATIG – MnO2, ATIG – CaO & ATIG – MgO are due to intermediate micro structure between coarse and fine in heat affected zone. ATIG – Al2O3 weld zone & heat affected zone and heat affected zone of ATIG – MnO2, ATIG – CaO & ATIG – MgO shows coarse microstructure leading to reduction in micro hardness value. Cooling rate for the different CCTIG & ATIG welding are recorded and correlation between the micro structures are studied. Coarse micro structure in weld zone and heat affected zone have least cooling rate whereas fine micro structure in weld zone resulted at higher cooling rate. Heat affected zone strongly depends on temperature gradient between the weld center and weldment’s heat affected zone.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.