Issue |
MATEC Web Conf.
Volume 148, 2018
International Conference on Engineering Vibration (ICoEV 2017)
|
|
---|---|---|
Article Number | 14001 | |
Number of page(s) | 6 | |
Section | Vibration-Based Structural Health Monitoring Data Analysis and Time Series Methods | |
DOI | https://doi.org/10.1051/matecconf/201814814001 | |
Published online | 02 February 2018 |
The effect of nylon nanofibers on the dynamic behaviour and the delamination resistance of GFRP composites
1
University of Strathclyde, Department of Mechanical and Aerospace Engineering, 75 Montrose Street, G1 1XJ, Glasgow, UK
2
IMDEA Materials Institute, C/ Eric Kandel 2, 28906, Getafe, Spain
3
University of Bologna, Department of Industrial Engineering, Viale Risorgimento 2, 40125, Bologna, Italy
* Corresponding author: cristobal.garcia@strath.ac.uk
Vibrations are responsible for a considerable number of accidents in aircrafts, bridges and other civil engineering structures. Therefore, there is a need to reduce the vibrations on structures made of composite materials. Delamination is a particularly dangerous failure mode for composite materials because delaminated composites can lose up to 60% of their strength and stiffness and still remain unchanged. One of the methods to suppress vibrations and preventing delamination is to incorporate nanofibers into the composite laminates. The aim of the present work is to investigate how nylon nanofibers affect the dynamic behaviour and delamination resistance of glass fibre reinforced polymer (GFRP) composites. Experiments and numerical simulations using finite element modelling (FEM) analysis are used to estimate the natural frequencies, the damping ratio and inter-laminar strength in GFRP composites with and without nylon nanofibers. It is found that the natural frequencies of the nylon nano-modified composites do not change significantly as compared to the traditional composites. However, nano-modified composites demonstrated a considerable increase in damping ratio and inter-laminar shear strength due to the incorporation of nylon nanofibers. This work contributes to the knowledge about the mechanical and dynamic properties of glass fibre reinforced polymer (GFRP) composites with nylon nanofibers.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.