Issue |
MATEC Web Conf.
Volume 174, 2018
3rd Scientific Conference Environmental Challenges in Civil Engineering (ECCE 2018)
|
|
---|---|---|
Article Number | 04006 | |
Number of page(s) | 8 | |
Section | Innovative Construction Technologies and Exploitation of Buildings and Structures (Including Industrial, Hydrotechnical, Communal, Transportation and Geotechnical), BIM in Civil Engineering, Legal and Organizational Issues of Preparation and Implementation of Construction Projects | |
DOI | https://doi.org/10.1051/matecconf/201817404006 | |
Published online | 26 June 2018 |
Environmental interactions to composite elements of all-GFRP Kolding Footbridge
Faculty of Civil Engineering and Architecture, Opole University of Technology, Opole, Poland.
* Corresponding author: b.stankiewicz@po.opole.pl
Structural integrity of a composite material embraces contributions from: materials science and engineering, processing science, design and fabrication technology. It combines a number of interacting factors: the criticality of the application, the accessibility for and ability to inspect vital parts and components, the intended use including load spectrum and time, the consequences of impact, fatigue, temperature and hostile environment, the nature of inherent flaws, the constituent properties of the material system utilized, and it takes into account human factors. Glass fibre-reinforced polymer GFRP pultruded profiles have great potential in the construction industry, presenting certain advantages when compared with traditional materials, including the potentially improved durability under fluctuating levels of environmental factors. The contribution presents analysis of GFRP composite, acquired from cablestayed Fiberline Bridge exploited for 20 years in the fjord area of Kolding, Denmark. The differential scanning calorimetry (DSC) experiments were performed in the GFRP composite bridge material, in order to determine the mass variation and the energy changes suffered by the materials, as a function of temperature and time. Dynamic mechanical analysis (DMA) was allowed to detect thermal effects based on changes in the modulus or damping behavior. Tensile and flexural tests let to observe the decomposition process and had taken information of basic stress parameters of GFRP material used in Kolding Footbridge. Aforementioned analyses of durability are necessary to examine and monitoring for environmentally aged composites bridge elements.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.