Issue |
MATEC Web Conf.
Volume 144, 2018
International Conference on Research in Mechanical Engineering Sciences (RiMES 2017)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 8 | |
Section | Machine Design | |
DOI | https://doi.org/10.1051/matecconf/201814401001 | |
Published online | 09 January 2018 |
Computational study on the effect of a conical spring on handling of buses at low speed
Automobile Engineering, School of Mechanical Engineering, SASTRA, Thanjvaur, India
* Corresponding author: aravi1995.05@gmail.com
Handling and ride characteristic are dependent to a large extent on the characteristic of a vehicle’s suspension system. This work explores the effect of the use of conical spring in place of conventional cylindrical profiled helical spring design in the handling of a bus at low speeds through full vehicle multi-body simulations. The bus was modelled using standard template available in ADAMSTM software package. The vehicle inertial properties were verified against properties in literature. The conventional spring characteristic (L) from ADAMSTM database was taken as reference and compared it with a non-linear characteristic (NL) based on literature data. The planned maneuover was to execute a right turn based on standard road dimension inputs from IRC 86:1983 at a constant speed of 30 km/hour with acceleration controlled by software module. Chassis displacements, displacements of spring were tracked to understand handling and ride quality. The variation of chassis displacements showed a significant improvement in ride characteristic of vehicle with most vibrations being damped in NL at time lower than the L characteristic suspension. All through the study, lateral acceleration was well within the rollover threshold and tire interaction forces did not exhibit any significant changes.
Key words: Non-Linear Spring / Progressive Spring / Conical Spring / Bus / multi-body dynamic simulation
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.