Issue |
MATEC Web Conf.
Volume 140, 2017
2017 International Conference on Emerging Electronic Solutions for IoT (ICEESI 2017)
|
|
---|---|---|
Article Number | 01014 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/matecconf/201714001014 | |
Published online | 11 December 2017 |
Controller Placement Algorithms in Software Defined Network - A Review of Trends and Challenges
1
School of Computer and Communication Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis
2
School of Computer Science and IT, RMIT University, Melbourne, VIC 30000, Australia
3
School of Information Technology, Monash University, Clayton, VIC 3800, Australia
* Corresponding author: zahereel@unimap.edu.my
Traditional network architectures are complex to manage, comparatively static, rigid and difficult to make changes for new innovation. The proprietary devices in such architectures are based on manual configuration which are unwieldy and error-prone. Software Defined Network (SDN) which is described as a new network paradigm that decouple the control plane from data plane are capable to solve today's network issues and improve the network performance. Nevertheless, among so many challenges and research opportunity in SDN, Controller Placement Problem (CPP) is said to be the most important issues which can directly affect the overall network performance. Thus far, the issue regarding the CPP and its challenge has not been completely reviewed and discussed properly in any other papers. In this paper, we provide a comprehensive review on several optimized controller placement problem algorithms in SDN. This paper also highlights some limitations of the reviewed methods and also emphasizes on suitable approach to address the aforementioned problems.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.