Issue |
MATEC Web Conf.
Volume 137, 2017
Modern Technologies in Manufacturing (MTeM 2017 - AMaTUC)
|
|
---|---|---|
Article Number | 01019 | |
Number of page(s) | 8 | |
Section | Manufacturing Engineering | |
DOI | https://doi.org/10.1051/matecconf/201713701019 | |
Published online | 22 November 2017 |
Analysis of shape correctness of surfaces of diamond burnished components
University of Miskolc, Institute of Manufacturing Science, 3515 Miskolc, Egyetemváros, Hungary
* Corresponding author: gyulavarga@uni-miskolc.hu
In these days, diamond burnishing is frequently used for final finishing manufacturing operations of components. Diamond burnishing belongs to cold plastic manufacturing procedures. When using this technique, the following advantages can be obtained: micro-hardness of near surface layer is increasing; surface roughness is improving and the shape correctness is also improving. This paper deals with how the different technological parameters of burnishing, such as the feed rate, the burnishing speed and the burnishing force effect on the cylindricity of the burnished workpiece. The experiment was done on some specimen having outer cylindrical surfaces. The experiments were executed by the Taguchi type Full Factorial Experiment Design method with which empirical formulas can be efficiently created. The measurements of the cylindricity of specimens were done with a circular and position error measuring. From the measured data, special improvement ratios were calculated in order to define the appropriate range of technological parameters which results high improvements. Further aim was to compare the measured values of different cylindricity parameters.
© The authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.