Issue |
MATEC Web Conf.
Volume 123, 2017
2017 The 2nd International Conference on Precision Machinery and Manufacturing Technology (ICPMMT 2017)
|
|
---|---|---|
Article Number | 00014 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/matecconf/201712300014 | |
Published online | 21 September 2017 |
Warpage behavior analysis in package processes of embedded copper substrates
1 National Sun Yat-Sen University, Department of Mechanical and Electro-Mechanical Engineering, 80424, Gushan Dist, Taiwan
2 Advanced Semiconductor Engineering, 81170 Nanzi Dist Kaifa Rd. No.25, Taiwan
* e-mail: M043020067@student.nsysu.edu.tw
With the advance of the semiconductor industry and in response to the demands of ultra-thin products, packaging technology has been continuously developed. Thermal bonding process of copper pillar flip chip packages is a new bonding process in packaging technology, especially for substrates with embedded copper trace. During the packaging process, the substrate usually warps because of the heating process. In this paper, a finite element software ANSYS is used to model the embedded copper trace substrate and simulate the thermal and deformation behaviors of the substrate during the heating package process. A fixed geometric configuration equivalent to the real structure is duplicated to make the simulation of the warpage behavior of the substrate feasible. An empirical formula for predicting the warpage displacements is also established.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.